A Survey of Modern Authorship Attribution Methods

Efstathios Stamatakos

Dept. of Information and Communication Systems Eng.
University of the Aegean
Karlovassi, Samos – 83200, Greece
stamatatos@aegean.gr

Abstract

Authorship attribution supported by statistical or computational methods has a long history starting from 19th century and marked by the seminal study of Mosteller and Wallace (1964) on the authorship of the disputed Federalist Papers. During the last decade, this scientific field has been developed substantially taking advantage of research advances in areas such as machine learning, information retrieval, and natural language processing. The plethora of available electronic texts (e.g., e-mail messages, online forum messages, blogs, source code, etc.) indicates a wide variety of applications of this technology provided it is able to handle short and noisy text from multiple candidate authors. In this paper, a survey of recent advances of the automated approaches to attributing authorship is presented examining their characteristics for both text representation and text classification. The focus of this survey is on computational requirements and settings rather than linguistic or literary issues. We also discuss evaluation methodologies and criteria for authorship attribution studies and list open questions that will attract future work in this area.

1. Introduction

The main idea behind statistically or computationally-supported authorship attribution is that by measuring some textual features we can distinguish between texts written by different authors. The first attempts to quantify the writing style go back to 19th century, with the pioneering study of Mendenhall (1887) on the plays of Shakespeare followed by statistical studies in the first half of the 20th century by Yule (1938; 1944) and Zipf (1932). Later, the detailed study by Mosteller and Wallace (1964) on the authorship of ‘The Federalist Papers’ (a series of 146 political essays written by John Jay, Alexander Hamilton, and James Madison, twelve of which claimed by both Hamilton and Madison) was undoubtedly the most influential work in authorship attribution. Their method was based on Bayesian statistical analysis of the frequencies of a small set of common words (e.g., ‘and’, ‘to’, etc.) and produced significant discrimination results between the candidate authors.

Essentially, the work of Mosteller and Wallace (1964) initiated non-traditional authorship attribution studies, as opposed to traditional human expert-based methods. Since then and until the late 1990s, research in authorship attribution was dominated by attempts to define features for quantifying writing style, a line of research known as ‘stylometry’ (Holmes, 1994; Holmes, 1998). Hence, a great variety of measures including sentence length, word length, word frequencies, character frequencies, and vocabulary richness functions had been proposed. Rudman (1998) estimated that nearly 1,000 different measures had been proposed that far. The authorship attribution methodologies proposed during that period were computer-assisted rather than computer-based, meaning that the aim was rarely at developing a fully-automated system. In certain cases, there were methods achieved impressive preliminary results and made many people think that the solution of this problem was too close. The most characteristic example is the CUSUM (or QSUM) technique (Morton & Michealson, 1990) that gained publicity and was accepted in courts as expert evidence. However, the research community heavily criticized it and considered it generally unreliable (Holmes & Tweedie, 1995). Actually, the main problem of that early period was the lack of
objective evaluation of the proposed methods. In most of the cases, the testing ground was literary works of unknown or disputed authorship (e.g., the Federalist case), so the estimation of attribution accuracy was not even possible. The main methodological limitations of that period concerning the evaluation procedure were the following:

- The textual data were too long (usually including entire books) and probably not stylistically homogeneous.
- The number of candidate authors was too small (usually 2 or 3).
- The evaluation corpora were not controlled for topic.
- The evaluation of the proposed methods was mainly intuitive (usually based on subjective visual inspection of scatterplots).
- The comparison of different methods was difficult due to lack of suitable benchmark data.

Since the late 1990s, things have changed in authorship attribution studies. The vast amount of electronic texts available through Internet media (emails, blogs, online forums, etc) increased the need for handling this information efficiently. This fact had a significant impact in scientific areas such as information retrieval, machine learning, and natural language processing (NLP). The development of these areas influenced authorship attribution technology as described below:

- Information retrieval research developed efficient techniques for representing and classifying large volumes of text.
- Powerful machine learning algorithms became available to handle multi-dimensional and sparse data allowing more expressive representations. Moreover, standard evaluation methodologies have been established to compare different approaches on the same benchmark data.
- NLP research developed tools able to analyze text efficiently and providing new forms of measures for representing the style (e.g., syntax-based features).

More importantly, the plethora of available electronic texts revealed the potential of authorship analysis in various applications (Madigan, Lewis, Argamon, Fradkin, & Ye, 2005) in diverse areas including intelligence (e.g., attribution of messages or proclamations to known terrorists, linking different messages by authorship) (Abbasi & Chen, 2005), criminal law (e.g., identifying writers of harassing messages, verifying the authenticity of suicide notes) and civil law (e.g., copyright disputes) (Chaski, 2005; Grant, 2007), computer forensics (e.g., identifying the authors of source code of malicious software) (Frantzeskou, Stamatatos, Gritzalis, & Katsikas, 2006), in addition to the traditional application to literary research (e.g., attributing anonymous or disputed literary works to known authors) (Burrows, 2002; Hoover, 2004a). Hence, (roughly) the last decade can be viewed as a new era of authorship analysis technology, this time dominated by efforts to develop practical applications dealing with real-world texts (e.g., e-mails, blogs, online forum messages, source code, etc.) rather than solving disputed literary questions. Emphasis is now given to the objective evaluation of the proposed methods as well as the comparison of different methods based on common benchmark corpora (Juola, 2004). In addition, factors playing a crucial role in the accuracy of the produced models are examined, such as the training text size (Marton, Wu, & Hellerstein, 2005; Hirst & Feiguina, 2007), the number of candidate authors (Koppel, Schler, Argamon, & Messeri, 2006), and the distribution of training texts over the candidate authors (Stamatatos, 2008).

In the typical authorship attribution problem, a text of unknown authorship is assigned to one candidate author, given a set of candidate authors for whom text samples of undisputed authorship are available. From a machine learning point-of-view, this can be viewed as a multi-class single-label text categorization task (Sebastiani, 2002). This task is also called authorship (or author) identification usually by researchers with a background in computer science. Several studies focus exclusively on authorship attribution (Stamatatos, Fakotakis, & Kokkinakis, 2001; Keselj, Peng, Cercone, & Thomas, 2003; Zheng, Li, Chen, & Huang,
while others use it as just another testing ground for text categorization methodologies (Khmelev & Teahan, 2003a; Peng, Shuurmans, & Wang, 2004; Marton, et al., 2005; Zhang & Lee, 2006). Beyond this problem, several other authorship analysis tasks can be defined, including the following:

- Author verification (i.e., to decide whether a given text was written by a certain author or not) (Koppel & Schler, 2004).
- Plagiarism detection (i.e., finding similarities between two texts) (Meyer zu Eisen, Stein, & Kulig, 2007; Stein & Meyer zu Eisen, 2007).
- Author profiling or characterization (i.e., extracting information about the age, education, sex, etc. of the author of a given text) (Koppel, Argamon, & Shimoni, 2002).
- Detection of stylistic inconsistencies (as may happen in collaborative writing) (Collins, Kaufer, Vlachos, Butler, & Ishizaki, 2004; Graham, Hirst, & Marthi, 2005).

This paper presents a survey of the research advances in this area during roughly the last decade (earlier work is excellently reviewed by Holmes (1994; 1998)) emphasizing computational requirements and settings rather than linguistic or literary issues. First, in Section 2, a comprehensive review of the approaches to quantify the writing style is presented. Then, in Section 3, we focus on the authorship identification problem (as described above). We propose the distinction of attribution methodologies according to how they handle the training texts, individually or cumulatively (per author), and examine their strengths and weaknesses across several factors. In Section 4, we discuss the evaluation criteria of authorship attribution methods while in Section 5 the conclusions drawn by this survey are summarized and future work directions in open research issues are indicated.

2. Stylometric Features

Previous studies on authorship attribution proposed taxonomies of features to quantify the writing style, the so called style markers, under different labels and criteria (Holmes, 1994; Stamatatos, Fakotakis, & Kokkinakis, 2000; Zheng, et al., 2006). The current review of text representation features for stylistic purposes is mainly focused on the computational requirements for measuring them. First, lexical and character features consider a text as a mere sequence of word-tokens or characters, respectively. Note that although lexical features are more complex than character features, we start with them for the sake of tradition. Then, syntactic and semantic features require deeper linguistic analysis, while application-specific features can only be defined in certain text domains or languages. The basic feature categories and the required tools and resources for their measurement are shown in Table 1. Moreover, various feature selection and extraction methods to form the most appropriate feature set for a particular corpus are discussed.

2.1 Lexical Features

A simple and natural way to view a text is as a sequence of tokens grouped into sentences, each token corresponding to a word, number, or a punctuation mark. The very first attempts to attribute authorship were based on simple measures such as sentence length counts and word length counts (Mendenhall, 1887). A significant advantage of such features is that they can be applied to any language and any corpus with no additional requirements except the availability of a tokenizer (i.e., a tool to segment text into tokens). However, for certain natural languages (e.g., Chinese) this is not a trivial task. In case of using sentential information, a tool that detects sentence boundaries should also be available. In certain text domains with heavy use of abbreviations or acronyms (e.g., e-mail messages) this procedure may introduce considerable noise in the measures.

The vocabulary richness functions are attempts to quantify the diversity of the vocabulary of a text. Typical examples are the type-token ratio V/N, where V is the size of the
TABLE 1. Types of stylometric features together with computational tools and resources required for their measurement (brackets indicate optional tools).

<table>
<thead>
<tr>
<th>Features</th>
<th>Required tools and resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lexical</td>
<td></td>
</tr>
<tr>
<td>Token-based (word length, sentence length, etc.)</td>
<td>Tokenizer, [Sentence splitter]</td>
</tr>
<tr>
<td>Vocabulary richness</td>
<td>Tokenizer</td>
</tr>
<tr>
<td>Word frequencies</td>
<td>Tokenizer, [Stemmer, Lemmatizer]</td>
</tr>
<tr>
<td>Word n-grams</td>
<td>Tokenizer</td>
</tr>
<tr>
<td>Errors</td>
<td>Tokenizer, Orthographic spell checker</td>
</tr>
<tr>
<td>Character</td>
<td></td>
</tr>
<tr>
<td>Character types (letters, digits, etc.)</td>
<td>Character dictionary</td>
</tr>
<tr>
<td>Character n-grams (fixed-length)</td>
<td>-</td>
</tr>
<tr>
<td>Character n-grams (variable-length)</td>
<td>Feature selector</td>
</tr>
<tr>
<td>Compression methods</td>
<td>Text compression tool</td>
</tr>
<tr>
<td>Syntactic</td>
<td></td>
</tr>
<tr>
<td>Part-of-Speech</td>
<td>Tokenizer, Sentence splitter, POS tagger</td>
</tr>
<tr>
<td>Chunks</td>
<td>Tokenizer, Sentence splitter, [POS tagger], Text chunker</td>
</tr>
<tr>
<td>Sentence and phrase structure</td>
<td>Tokenizer, Sentence splitter, POS tagger, Text chunker, Partial parser</td>
</tr>
<tr>
<td>Rewrite rules frequencies</td>
<td>Tokenizer, Sentence splitter, POS tagger, Text chunker, Full parser</td>
</tr>
<tr>
<td>Errors</td>
<td>Tokenizer, Sentence splitter, Syntactic spell checker</td>
</tr>
<tr>
<td>Semantic</td>
<td></td>
</tr>
<tr>
<td>Synonyms</td>
<td>Tokenizer, [POS tagger], Thesaurus</td>
</tr>
<tr>
<td>Semantic dependencies</td>
<td>Tokenizer, Sentence splitter, POS tagger, Text Chunker, Partial parser, Semantic parser</td>
</tr>
<tr>
<td>Functional</td>
<td>Tokenizer, Sentence splitter, POS tagger, Specialized dictionaries</td>
</tr>
<tr>
<td>Application-specific</td>
<td></td>
</tr>
<tr>
<td>Structural</td>
<td>HTML parser, Specialized parsers</td>
</tr>
<tr>
<td>Content-specific</td>
<td>Tokenizer, [Stemmer, Lemmatizer], Specialized dictionaries</td>
</tr>
<tr>
<td>Language-specific</td>
<td>Tokenizer, [Stemmer, Lemmatizer], Specialized dictionaries</td>
</tr>
</tbody>
</table>
vocabulary (unique tokens) and \(N \) is the total number of tokens of the text, and the number of
hapax legomena (i.e., words occurring once) (de Vel, Anderson, Corney, & Mohay, 2001). Unfortunately, the vocabulary size heavily depends on text-length (as the text-length increases, the vocabulary also increases, quickly at the beginning and then more and more slowly). Various functions have been proposed to achieve stability over text-length, including \(K \) (Yule, 1944), and \(R \) (Honore, 1979), with questionable results (Tweedie & Baayen, 1998). Hence, such measures are considered unreliable to be used alone.

The most straightforward approach to represent texts is by vectors of word frequencies. The vast majority of authorship attribution studies are (at least partially) based on lexical features to represent the style. This is also the traditional bag-of-words text representation followed by researchers in topic-based text classification (Sebastiani, 2002). That is, the text is considered as a set of words each one having a frequency of occurrence disregarding contextual information. However, there is a significant difference in style-based text classification: the most common words (articles, prepositions, pronouns, etc.) are found to be among the best features to discriminate between authors (Burrows, 1987; Argamon & Levitan, 2005). Note that such words are usually excluded from the feature set of the topic-based text classification methods since they do not carry any semantic information and they are usually called ‘function’ words. As a consequence, style-based text classification using lexical features require much lower dimensionality in comparison to topic-based text classification. In other words, much less words are sufficient to perform authorship attribution (a few hundred words) in comparison to a thematic text categorization task (several thousand words). More importantly, function words are used in a largely unconscious manner by the authors and they are topic-independent. Thus, they are able to capture pure stylistic choices of the authors across different topics.

The selection of the specific function words that will be used as features is usually based on arbitrary criteria and requires language-dependent expertise. Various sets of function words have been used for English but limited information was provided about the way they have been selected: Abbasi and Chen (2005) reported a set of 150 function words; Argamon, Saric, and Stein (2003) used a set of 303 words; Zhao and Zobel (2005) used a set of 365 function words; 480 function words were proposed by Koppel and Schler (2003); another set of 675 words was reported by Argamon, Whitelaw, Chase, Hota, Garg, and Levitan (2007).

A simple and very successful method to define a lexical feature set for authorship attribution is to extract the most frequent words found in the available corpus (comprising all the texts of the candidate authors). Then, a decision has to be made about the amount of the frequent words that will be used as features. In the earlier studies, sets of at most 100 frequent words were considered adequate to represent the style of an author (Burrows, 1987; Burrows, 1992). Another factor that affects the feature set size is the classification algorithm that will be used since many algorithms overfit the training data when the dimensionality of the problem increases. However, the availability of powerful machine learning algorithms able to deal with thousands of features, like support vector machines (Joachims, 1998), enabled researchers to increase the feature set size of this method. Koppel, Schler, and Bonchek-Dokow (2007) used the 250 most frequent words while Stamatatos (2006a) extracted the 1,000 most frequent words. On a larger scale, Madigan, et al., (2005) used all the words that appear at least twice in the corpus. Note that the first dozens of most frequent words of a corpus are usually dominated by closed class words (articles, prepositions etc.) After a few hundred words, open class words (nouns, adjectives, verbs) are the majority. Hence, when the dimensionality of this representation method increases, some content-specific words may also be included in the feature set.

Despite the availability of a tokenizer, word-based features may require additional tools for their extraction. This would involve from simple routines like conversion to lowercase to more complex tools like stemmers (Sanderson & Guenter, 2006), lemmatizers (Tambouratzis, Markantonatou, Hairetakis, Vassiliou, Carayannis, & Tambouratzis, 2004; Gamon, 2004), or detectors of common homographic forms (Burrows, 2002). Another procedure used by van Halteren (2007) is to transform words into an abstract form. For example, the Dutch word ‘waarmaken’ is transformed to ‘#L#6+/L/ken’, where the first L indicates low frequency, 6+
indicates the length of the token, the second L a lowercase token, and ‘ken’ are its last three characters.

The bag-of-words approach provides a simple and efficient solution but disregards word-order (i.e., contextual) information. For example, the phrases ‘take on’, ‘the second take’ and ‘take a bath’ would just provide three occurrences of the word ‘take’. To take advantage of contextual information, word n-grams (n contiguous words aka word collocations) have been proposed as textual features (Peng, et al., 2004; Sanderson & Guenther, 2006; Coyotl-Morales, Villaseñor-Pineda, Montes-y-Gómez, & Rosso, 2006). However, the classification accuracy achieved by word n-grams is not always better than individual word features (Sanderson & Guenther, 2006; Coyotl-Morales, et al., 2006). The dimensionality of the problem following this approach increases considerably with n to account for all the possible combinations between words. Moreover, the representation produced by this approach is very sparse, since most of the word combinations are not encountered in a given (especially short) text making it very difficult to be handled effectively by a classification algorithm. Another problem with word n-grams is that it is quite possible to capture content-specific information rather than stylistic information (Gamon, 2004).

From another point of view, Koppel and Schler (2003) proposed various writing error measures to capture the idiosyncrasies of an author’s style. To that end, they defined a set of spelling errors (e.g., letter omissions and insertions) and formatting errors (e.g., all caps words) and they proposed a methodology to extract such measures automatically using a spell checker. Interestingly, human experts mainly use similar observations in order to attribute authorship. However, the availability of accurate spell checkers is still problematic for many natural languages.

2.2 Character Features

According to this family of measures, a text is viewed as a mere sequence of characters. That way, various character-level measures can be defined, including alphabetic characters count, digit characters count, uppercase and lowercase characters count, letter frequencies, punctuation marks count, etc. (de Vel, et al., 2001; Zheng, et al., 2006). This type of information is easily available for any natural language and corpus and it has been proven to be quite useful to quantify the writing style (Grieve, 2007).

A more elaborate, although still computationally simplistic, approach is to extract frequencies of n-grams on the character-level. For instance, the character 4-grams of the beginning of this paragraph would be1: [A_mo], [m_or], [o_re], [re_e], etc. This approach is able to capture nuances of style including lexical information (e.g., |_in_|, |text|), hints of contextual information (e.g., |in_t|), use of punctuation and capitalization, etc. Another advantage of this representation is its ability to be tolerant to noise. In cases where the texts in question are noisy containing grammatical errors or making strange use of punctuation, as it usually happens in e-mails or online forum messages, the character n-gram representation is not affected dramatically. For example, the words ‘simplistic’ and ‘simpilstc’ would produce many common character trigrams. On the other hand, these two words would be considered different in a lexically-based representation. Note that in style-based text categorization such errors could be considered personal traits of the author (Koppel & Schler, 2003). This information is also captured by character n-grams (e.g., in the uncommon trigrams |stc| and |tc_|). Finally, for oriental languages where the tokenization procedure is quite hard, character n-grams offer a suitable solution (Matsuura & Kanada, 2000). As can be seen in Table 1, the computational requirements of character n-gram features are minimal.

Note that, as with words, the most frequent character n-grams are the most important features for stylistic purposes. The procedure of extracting the most frequent n-grams is language-independent and requires no special tools. However, the dimensionality of this representation is considerably increased in comparison to the word-based approach.

1 The characters ‘|’ and ‘_’ are used to denote n-gram boundaries and a single space character, respectively.
This happens because character n-grams capture redundant information (e.g., \texttt{[and]} _
to analyze a particular natural language with relatively high accuracy. Moreover, such features will produce noisy datasets due to unavoidable errors made by the parser.

Baayen, van Halteren, and Tweedie (1996) were the first to use syntactic information measures for authorship attribution. Based on a syntactically annotated English corpus, comprising a semi-automatically produced full parse tree of each sentence, they were able to extract rewrite rule frequencies. Each rewrite rule expresses a part of syntactic analysis, for instance, the following rewrite rule:

\[\text{A:PP} \rightarrow \text{P:PREP} + \text{PC:NP} \]

means that an adverbial prepositional phrase is constituted by a preposition followed by a noun phrase as a prepositional complement. That detailed information describes both what the syntactic class of each word is and how the words are combined to form phrases or other structures. Experimental results showed that this type of measures performed better than vocabulary richness and lexical measures. On the other hand, it required a sophisticated and accurate fully-automated parser able to provide a detailed syntactic analysis of English sentences. Similarly, Gamon (2004) used the output of a syntactic parser to measure rewrite rule frequencies as described above. Although, the proposed syntactic features alone performed worse than lexical features, the combination of the two improved the results.

Another attempt to exploit syntactic information was proposed by Stamatatos, et al. (2000; 2001). They used a NLP tool able to detect sentence and chunk (i.e., phrases) boundaries in unrestricted Modern Greek text. For example, the first sentence of this paragraph would be analyzed as following:

NP[Another attempt] VP[to exploit] NP[syntactic information] VP[was proposed] PP[by Stamatatos, et al. (2000)].

where NP, VP, and PP stand for noun phrase, verb phrase, and prepositional phrase, respectively. This type of information is simpler than that used by Baayen et al. (1996), since there is neither structural analysis within the phrases or the combination of phrases into higher structures, but it could be extracted automatically with relatively high accuracy. The extracted measures referred to noun phrase counts, verb phrase counts, length of noun phrases, length of verb phrases, etc. More interesting, another type of relevant information was also used which Stamatatos, et al. (2000; 2001) called analysis-level measures. This type of information is relevant to the particular architecture of that specific NLP tool. In more detail, that particular tool analyzed the text in several steps. The first steps analyzed simple cases while the last steps attempted to combine the outcome of the first steps to produce more complex results. The analysis-level measures proposed for that tool had to do with the percentage of text each step achieved to analyze. Essentially this is as a type of indirect syntactic information and it is tool-specific in addition to language-specific. However, it is a practical solution for extracting syntactic measures from unrestricted text given the availability of a suitable NLP tool.

In a similar framework, tools that perform partial parsing can be used to provide syntactic features of varying complexity (Luyckx & Daelemans, 2005; Uzuner & Katz, 2005; Hirst & Feiguina, 2007). Partial parsing is between text chunking and full parsing and can handle unrestricted text with relatively high accuracy. Hirst and Feiguina (2007) transformed the output of a partial parser into an ordered stream of syntactic labels, for instance the analysis of the phrase ‘a simple example’ would produce the following stream of labels:

NX DT JJ NN

in words, a noun phrase consisting of a determiner, an adjective, and a noun. Then, they extracted measures of bigram frequencies from that stream to represent contextual syntactic information and they found this information useful to discriminate the authors of very short texts (about 200 words long).

An even simpler approach is to use just a Part-of-Speech (POS) tagger, a tool that assigns a tag of morpho-syntactic information to each word-token based on contextual information. Usually, POS taggers perform quite accurately in unrestricted text and several
researchers have used POS tag frequencies or POS tag n-gram frequencies to represent style (Argamon-Engelson, Koppel & Avneri, 1998; Kukushkina, Polikarpov, & Khmelev, 2001; Koppel & Schler, 2003; Diederich, Kindermann, Leopold, & Paass, 2003, Gamon, 2004; Zhao & Zobel, 2007). However, POS tag information provides only a hint of the structural analysis of sentences since it is not clear how the words are combined to form phrases or how the phrases are combined into higher-level structures.

Perhaps the most extensive use of syntactic information was described by van Halteren (2007). He applied a morpho-syntactic tagger and a syntactic analyzer for Dutch to a corpus of student essays and extracted unigrams, bigrams, and trigrams of morpho-syntactic tags as well as various n-gram measures from the application of rewrite rules. As a result, a huge set of about 900K features was constructed to quantify syntactic information!

Another interesting use of syntactic information was proposed by Koppel and Schler (2003) based on syntactic errors such as sentence fragments, run-on sentences, mismatched tense, etc. In order to detect such information they used a commercial spell checker. As with orthographic errors, this type of information is similar to that used by human experts when they attempt to attribute authorship. Unfortunately, the spell checkers are not very accurate and Koppel and Schler (2003) reported they had to modify the output of that tool in order to improve the error detection results.

Finally, Karlgren and Eriksson (2007) described a preliminary model based on two syntactic features, namely, adverbial expressions and occurrence of clauses within sentences. However, the quantification of these features is not the traditional relative frequency of occurrence within the text. They used sequence patterns aiming to describe the use of these features in consecutive sentences of the text. Essentially, this is an attempt to represent the distributional properties of the features in the text, a promising technique that can capture important stylistic properties of the author.

2.4 Semantic Features

It should be clear by now, the more detailed the text analysis required for extracting stylometric features, the less accurate (and the more noisy) the produced measures. NLP tools can be applied successfully to low-level tasks, such as sentence splitting, POS tagging, text chunking, partial parsing, so relevant features would be measured accurately and the noise in the corresponding datasets remains low. On the other hand, more complicated tasks such as full syntactic parsing, semantic analysis, or pragmatic analysis cannot yet be handled adequately by current NLP technology for unrestricted text. As a result, very few attempts have been made to exploit high-level features for stylometric purposes.

Gamon (2004) used a tool able to produce semantic dependency graphs but he did not provide information about the accuracy of this tool. Two kinds of information were then extracted: binary semantic features and semantic modification relations. The former concerned number and person of nouns, tense and aspect of verbs, etc. The latter described the syntactic and semantic relations between a node of the graph and its daughters (e.g., a nominal node with a nominal modifier indicating location). Reported results showed that semantic information when combined with lexical and syntactic information improved the classification accuracy.

McCarthy, Lewis, Dufty, and McNamara (2006) described another approach to extract semantic measures. Based on WordNet (Fellbaum, 1998) they estimated information about synonyms and hypernyms of the words, as well as the identification of causal verbs. Moreover, they applied latent semantic analysis (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990) to lexical features in order to detect semantic similarities between words automatically. However, there was no detailed description of the features and the evaluation procedure did not clarify the contribution of semantic information in the classification model.

Perhaps the most important method of exploiting semantic information so far was described by Argamon, et al. (2007). Inspired by the theory of Systemic Functional Grammar (SFG) (Halliday, 1994) they defined a set of functional features that associate certain words or phrases with semantic information. In more detail, in SFG the ‘CONJUNCTION’ scheme
denotes how a given clause expands on some aspect of its preceding context. Types of expansion could be ‘ELABORATION’ (exemplification or refocusing), ‘EXTENSION’ (adding new information), or ‘ENHANCEMENT’ (qualification). Certain words or phrases indicate certain modalities of the ‘CONJUNCTION’ scheme. For example, the word ‘specifically’ is used to identify a ‘CLARIFICATION’ of an ‘ELABORATION’ of a ‘CONJUNCTION’ while the phrase ‘in other words’ is used to identify an ‘APPOSITION’ of an ‘ELABORATION’ of a ‘CONJUNCTION’. In order to detect such semantic information, they used a lexicon of words and phrases produced semi-automatically based on online thesauruses including WordNet. Each entry in the lexicon associated a word or phrase with a set of syntactic constraints (in the form of allowed POS tags) and a set of semantic properties. The set of functional measures, then, contained measures showing, for instance, how many ‘CONJUNCTION’s were expanded to ‘ELABORATION’s or how many ‘ELABORATION’s were elaborated to ‘CLARIFICATION’s, etc. However, no information was provided on the accuracy of those measures. Experiments of authorship identification on a corpus of English novels of the 19th century showed that the functional features can improve the classification results when combined with traditional function word features.

2.5 Application-specific Features

The previously described lexical, character, syntactic, or semantic features are application-independent since they can be extracted from any textual data given the availability of the appropriate NLP tools and resources required for their measurement. Beyond that, one can define application-specific measures in order to better represent the nuances of style in a given text domain. This section reviews the most important of these measures.

The application of the authorship attribution technology in domains such as e-mail messages, and online forum messages revealed the possibility to define structural measures in order to quantify the authorial style. Structural measures include the use of greetings and farewells in the messages, types of signatures, use of indentation, paragraph length, etc. (de Vel, et al., 2001; Teng, Lai, Ma, & Li, 2004; Zheng, et al., 2006; Li, Zheng, & Chen, 2006) Moreover, provided the texts in question are in HTML form, measures related to HTML tag distribution (de Vel, et al., 2001), font color counts, and font size counts (Abbasi & Chen, 2005) can also be defined. Apparently, such features can only be defined in given text genres. Moreover, they are particular important in very short texts where the stylistic properties of the textual content cannot be adequately represented using application-independent methods. However, accurate tools are required for their extraction. Zheng, et al. (2006) reported they had difficulties to measure accurately their structural features.

In general, the style factor of a text is considered orthogonal to its topic. As a result, stylometric features attempt to avoid content-specific information to be more reliable in cross-topic texts. However, in cases all the available texts for all the candidate authors are on the same thematic area, carefully selected content-based information may reveal some authorial choices. In order to better capture the properties of an author’s style within a particular text domain, content-specific keywords can be used. In more detail, given that the texts in question deal with certain topics and are of the same genre, one can define certain words frequently used within that topic or that genre. For example, in the framework of the analysis of online messages from the newsgroup misc.forsale.computers Zheng, et al. (2006) defined content-specific keywords such as ‘deal’, ‘sale’, or ‘obo’ (or best offer). The difference of these measures and the function words discussed in section 2.2 is that they carry semantic information and are characteristic of particular topics and genres. It remains unclear how to select such features for a given text domain.

Other types of application-specific features can only be defined for certain natural languages. For example, Tambouratzis, et al. (2004) attempted to take advantage of the diglossia phenomenon in Modern Greek and proposed a set of verbal endings which are usually found in ‘Katharevousa’ and ‘Dimotiki’, that is, roughly the formal and informal variations of Modern Greek, respectively. Although, such measures have to be defined manually, they can be very effective when dealing with certain text genres.
2.6 Feature Selection and Extraction

The feature sets used in authorship attribution studies often combine many types of features. In addition, some feature types, such as lexical and character features, can considerably increase the dimensionality of the feature set. In such cases, feature selection algorithms can be applied to reduce the dimensionality of the representation (Forman, 2003). That way the classification algorithm is helped to avoid overfitting on the training data.

In general, the features selected by these methods are examined individually on the basis of discriminating the authors of a given corpus (Forman, 2003). However, certain features that seem irrelevant when examined independently may be useful in combination with other variables. In this case, the performance of certain classification algorithms that can handle high dimensional feature sets (e.g., support vector machines) might be diminished by reducing the dimensionality (Brank, Grobelnik, Milic-Frayling, & Mladenic, 2002). To avoid this problem, feature subset selection algorithms examine the discriminatory power of feature subsets (Kohavi & John, 1997). For example, Li, et al. (2006) described the use of a genetic algorithm to reduce an initial set of 270 features to an optimal subset for the specific training corpus comprising 134 features. As a result, the classification performance improved from 97.85% (when the full set was used) to 99.01% (when the optimal set was used).

However, the best features may strongly correlate with one of the authors due to content-specific rather than stylistic choices (e.g., imagine we have two authors for whom there are articles about politics for the one and articles about sports for the other). In other words, the features identified by a feature selection algorithm may be too corpus-dependent with questionable general use. On the other hand, in the seminal work of Mosteller and Wallace (1964) the features were carefully selected based on their universal properties to avoid dependency on a specific training corpus.

The most important criterion for selecting features in authorship attribution tasks is their frequency. In general, the more frequent a feature, the more stylistic variation it captures. Forsyth and Holmes (1996) were the first to compare (character n-gram) feature sets selected by frequency with feature sets selected by distinctiveness and they found the latter more accurate. However, they restricted the size of the extracted feature sets to relatively very low level (96 features). Houvardas and Stamatatos (2006) proposed an approach for extracting character n-grams of variable length using frequency information only. The comparison of this method with information gain, a well-known feature selection algorithm examining the discriminatory power of features individually (Forman, 2003), showed that the frequency-based feature set was more accurate for feature sets comprising up to 4,000 features. Similarly, Koppel, Akiva, and Dagan (2006) presented experiments comparing frequency-based feature selection with odds-ratio, another typical feature selection algorithm using discrimination information (Forman, 2003). More important, the frequency information they used was not extracted from the training corpus. Again, the frequency-based feature subsets performed better than those produced by odds-ratio. When the frequency information was combined with odds-ratio the results were further improved.

Koppel, Akiva, and Dagan (2006) also proposed an additional important criterion for feature selection in authorship attribution, the instability of features. Given a number of variations of the same text, all with the same meaning, the features that remain practically unchanged in all texts are considered stable. In other words, stability may be viewed as the availability of ‘synonyms’ for certain language characteristics. For example, words like ‘and’ and ‘the’ are very stable since there are no alternatives for them. On the other hand, words like ‘benefit’ or ‘over’ are relatively unstable since they can be replaced by ‘gain’ and ‘above’, respectively, in certain situations. Therefore, instable features are more likely to indicate stylistic choices of the author. To produce the required variations of the same text, Koppel, Akiva, and Dagan (2006) used several machine translation programs to generate translations from English to another language and then back to English. Although the quality of the produced texts was obviously low, this procedure was fully-automated. Let \(\{d_1, d_2, \ldots, d_n\} \) be a set of texts and \(\{d_i^1, d_i^2, \ldots, d_i^m\} \) a set of variations of the \(i \)-th text, all with roughly...
the same meaning. For a stylometric feature c, let c_i^j be the value of feature c in the j-th variation of the i-th text and $k_i = \sum_j c_i^j$. Then, the instability of c is defined by:

$$IN_c = 1 - \frac{\sum_j k_i \log k_i - \sum_j c_i^j \log c_i^j}{\sum_i k_i \log m}$$

Experiments showed that features selected by the instability criterion alone were not as effective as features selected by frequency. However, when the frequency and the instability criteria were combined the results were much better.

Another approach to reduce dimensionality is via feature extraction (Sebastiani, 2002). Here, a new set of ‘synthetic’ features is produced by combining the initial set of features. The most traditional feature extraction technique in authorship attribution studies is the principal components analysis which provides linear combinations of the initial features. The two most important principal components can, then, be used to represent the texts in a two-dimensional space (Burrows, 1987; Burrows, 1992; Binongo, 2003). However, the reduction of the dimensionality to a single feature (or a couple of features) has the consequence of losing too much variation information. Therefore, such simple features are generally unreliable to be used alone. Another, more elaborate feature extraction method was described by Zhang and Lee (2006). They first built a suffix tree representing all the possible character n-grams of the texts and then extracted groups of character n-grams according to frequency and redundancy criteria. The resulting key-substring-groups, each one accumulating many character n-grams, were the new features. The application of this method to authorship attribution and other text classification tasks provided promising results.

3. Attribution Methods

In every authorship identification problem, there is a set of candidate authors, a set of text samples of known authorship covering all the candidate authors (training corpus), and a set of text samples of unknown authorship (test corpus), each one of them should be attributed to a candidate author. In this survey, we distinguish the authorship attribution approaches according to whether they treat each training text individually or cumulatively (per author). In more detail, some approaches concatenate all the available training texts per author in one big file and extract a cumulative representation of that author’s style (usually called the author’s profile) from this concatenated text. That is, the differences between texts written by the same author are disregarded. We examine such profile-based approaches first since early work in authorship attribution has followed this practice (Mosteller & Wallace, 1964). On the other hand, another family of approaches requires multiple training text samples per author in order to develop an accurate attribution model. That is, each training text is individually represented as a separate instance of authorial style. Such instance-based approaches are described in Section 3.2 while Section 3.3 deals with hybrid approaches attempting to combine characteristics of profile-based and instance-based methods. Then, in Section 3.4 we compare these two basic approaches and discuss their strengths and weaknesses across several factors.

It has to be noted that, in this review, the distinction between profile-based and instance-based approaches is considered the most basic property of the attribution methods since it largely determines the philosophy of each method (e.g., a classification model of generative or discriminative nature). Moreover, it shows the kind of writing style that each method attempts to handle: a general style for each author or a separate style of each individual document.

2 Note that this term should not be confused with author profiling methods (e.g., extracting information about the author gender, age, etc.) (Koppel, et al., 2003)

3 Note that this term should not be confused with instance-based learning methods (Mitchell, 1997).
3.1 Profile-based Approaches

One way to handle the available training texts per author is to concatenate them in one single text file. This big file is used to extract the properties of the author’s style. An unseen text is, then, compared with each author file and the most likely author is estimated based on a distance measure. It should be stressed that there is no separate representation of each text sample but only one representation of a big file per author. As a result, the differences between the training texts by the same author are disregarded. Moreover, the stylometric measures extracted from the concatenated file may be quite different in comparison to each of the original training texts. A typical architecture of a profile-based approach is depicted in Figure 1. Note that x denotes a vector of text representation features. Hence, x_A is the profile of author A and x_u is the profile of the unseen text.

The profile-based approaches have a very simple training process. Actually, the training phase just comprises the extraction of profiles for the candidate authors. Then, the attribution model is usually based on a distance function that computes the differences of the profile of an unseen text and the profile of each author. Let $PR(x)$ be the profile of text x and $d(PR(x), PR(y))$ the distance between the profile of text x and the profile of text y. Then, the most likely author of an unseen text x is given by:

$$\text{author}(x) = \arg \min_{a \in A} d(PR(x), PR(x_a))$$

where A is the set of candidate authors and x_a is the concatenation of all training texts for author a. In the following, we first describe how this approach can be realized by using Probabilistic and compression models and, then, the CNG method and its variants are discussed.

FIG 1. Typical architecture of profile-based approaches.
3.1.1 Probabilistic Models

One of the earliest approaches to author identification that is still used in many modern studies employ the use of probabilistic models (Mosteller & Wallace, 1964; Clement & Sharp, 2003; Peng, et al., 2004; Zhao & Zobel, 2005; Madigan, et al., 2005; Sanderson & Guenter, 2006). Such methods attempt to maximize the probability $P(x|a)$ for a text x to belong to a candidate author a. Then, the attribution model seeks the author that maximizes the following similarity metric:

$$\text{author}(x) = \arg \max_{a \in A} \log \frac{P(x|a)}{P(x|\bar{a})}$$

where the conditional probabilities are estimated by the concatenation x_a of all available training texts of the author a and the concatenation of all the rest texts, respectively. Variants of such probabilistic classifiers (e.g., naïve Bayes) have been studied in detail in the framework of topic-based text categorization (Sebastiani, 2002). An extension of the naïve Bayes algorithm augmented with statistical language models was proposed by Peng, et al. (2004) and achieved high performance in authorship attribution experiments. In comparison to standard naïve Bayes classifiers, the approach of Peng, et al. (2004) allows local Markov chain dependencies in the observed variables to capture contextual information. Moreover, sophisticated smoothing techniques from statistical language modeling can be applied to this method (the best results for authorship attribution were obtained using absolute smoothing). More interesting, this method can be applied to both character and word sequences. Actually, Peng, et al (2004) achieved their best results for authorship attribution using word-level models for a specific corpus. However, this was not confirmed in other corpora as well.

3.1.2 Compression Models

The most successful of the compression-based approaches follow the profile-based methodology (Kukushkina, et al., 2001; Khmelev & Teahan, 2003a; Marton, et al., 2005). Such methods do not produce a concrete vector representation of the author’s profile. Therefore, we can consider $PR(x) = x$. Initially, all the available texts for the i-th author are first concatenated to form a big file x_a and a compression algorithm is called to produce a compressed file $C(x_a)$. Then, the unseen text x is added to each text x_a and the compression algorithm is called again for each $C(x_a + x)$. The difference in bit-wise size of the compressed files $d(x, x_a) = C(x_a + x) - C(x_a)$ indicates the similarity of the unseen text with each candidate author. Essentially, this difference calculates the cross-entropy between the two texts. Several off-the-shelf compression algorithms have been tested with this approach including RAR, LZW, GZIP, BZIP2, 7ZIP, etc. and in most of the cases RAR found to be the most accurate (Kukushkina, et al., 2001; Khmelev & Teahan, 2003a; Marton, et al., 2005).

It has to be underlined that the prediction by partial matching (PPM) algorithm (Teahan & Harper, 2003) that is used by RAR to compress text files works practically the same as the method of Peng, et al. (2004). However, there is a significant difference with the previously described probabilistic method. In particular, in the method of Khmelev and Teahan (2003a) the models describing x_a were adaptive with respect to x, that is, the compression algorithm was applied to the text $x_a + x$, so the compression model was modified as it processed the unseen text. In the method of Peng, et al. (2004) the models describing x_a were static, that is, the n-gram Markov models were extracted from text x_a and then applied to unseen text x and no modification of the models was allowed in the latter phase. For that reason, the application of the probabilistic method to the classification of an unseen text is faster in comparison to this compression-based approach. Another advantage of the language modeling approach is that it can be applied to both character and word sequences while the PPM compression models are only applied to character sequences.

3.1.3 CNG and Variants

A profile-based method of particular interest, the Common n-Grams (CNG) approach, was described by Keselj, et al. (2003). This method used a concrete representation of the author’s
profile. In particular, the profile \(PR(x) \) of a text \(x \) was composed by the \(L \) most frequent character \(n \)-grams of that text. The following distance is, then, used to estimate the similarity between two texts \(x \) and \(y \):

\[
d(PR(x), PR(y)) = \sum_{g \in PR(x) \cap PR(y)} \left(\frac{2(f_x(g) - f_y(g))}{f_x(g) + f_y(g)} \right)^2
d(PR(x), PR(y)) = \sum_{g \in PR(x) \cap PR(y)} \left(\frac{2(f_x(g) - f_y(g))}{f_x(g) + f_y(g)} \right)^2
\]

where \(g \) is a character \(n \)-gram while \(f_x(g) \) and \(f_y(g) \) are the relative frequencies of occurrence of that \(n \)-gram in texts \(x \) and \(y \), respectively. In words, this measure computes the dissimilarity between two profiles by calculating the relative difference between their common \(n \)-grams.

All the \(n \)-grams of the two profiles that are not common contribute a constant value to the distance. The CNG method has two important parameters that should be tuned: the profile size \(L \) and the character \(n \)-gram length \(n \), that is, how many and how long strings constitute the profile. Keselj, et al. (2003) reported their best results for \(1,000 \leq L \leq 5,000 \) and \(3 \leq n \leq 5 \). This basic approach has been applied successfully to various authorship identification experiments including the authorship attribution competition organized in 2004 (Juola, 2004, Juola, 2006).

An important problem in authorship attribution tasks arises when the distribution of the training corpus over the candidate authors is uneven. For example, it is not unusual, especially in forensic applications, to have multiple training texts for some candidate authors and very few training texts for other authors. Moreover, the length of these samples may not allow their segmentation into multiple parts to enrich the training instances of certain authors. In machine learning terms, this constitutes the class imbalance problem. The majority of the authorship attribution approaches studies present experiments based on balanced training sets (i.e., equal amount of training text samples for each candidate author) so it is not possible to estimate their accuracy under class imbalance conditions. Only a few studies take this factor into account (Marton, et al., 2005; Stamatatos, 2007).

The CNG distance function performs well when the training corpus is relatively balanced but it fails in imbalanced cases where at least one author’s profile is shorter than \(L \) (Stamatatos, 2007). For example, if we use \(L=4,000 \) and \(n=3 \), and the available training texts of a certain candidate author are too short, then the total amount of 3-grams that can be extracted from that authors’ texts may be less than 4,000. The distance function favors that author because the union of the profile of the unseen text and the profile of that author will result significant less \(n \)-grams, so the distance between the unseen text and that author would be estimated as quite low in comparison to the other authors. To overcome that problem, Frantzeskou, Stamatatos, Gritzalis, and Katsikas (2006) proposed a different and simpler distance, called simplified profile intersection (SPI), which simply counts the amount of common \(n \)-grams of the two profiles disregarding the rest. The application of this measure to author identification of source code provided better results than the original CNG distance. Note that in contrast to CNG distance, SPI is a similarity measure, meaning that the most likely author is the author with the highest SPI value. A problem of that distance can arise when all the candidate authors except one have very short texts. Then, SPI metric will favor the author with long texts since many more common \(n \)-grams will be detected in their texts and an unseen text.

Another variation of the CNG dissimilarity function was proposed by Stamatatos (2007):

\[
d(PR(x), PR(y), PR(N)) = \sum_{g \in PR(x)} \left(\frac{2(f_x(g) - f_y(g))}{f_x(g) + f_y(g)} \right)^2 \left(\frac{2(f_y(g) - f_N(g))}{f_y(g) + f_N(g)} \right)^2
\]

where \(N \) is the corpus norm (the concatenation of all available texts of all the candidate authors) and \(f_N(g) \) is the relative frequency of occurrence of the \(n \)-gram \(g \) in the corpus norm. Note that this function is not symmetric as the original CNG function. In particular, the first argument \(PR(x) \) is the profile of the unseen text and the second argument is an author profile. That way, only the \(n \)-grams of the unseen text’s profile contribute to the calculated sum. As a result, the problems described earlier with imbalanced corpora are significantly reduced since the distance between the unseen text and the candidate authors is always based on the same amount of terms. Moreover, each term is multiplied by the relative distance of the specific \(n \)-gram frequency from the corpus norm. Hence, the more an \(n \)-gram deviates from its ‘normal’
frequency, the more contributes to the distance. On the other hand, if the frequency of an n-gram is found exactly the same as its ‘normal’ frequency, it does not contribute at all at the distance value (the norm factor is zero). Experiments reported by Stamatatos (2007) showed that this distance function can better handle cases where limited and imbalanced corpora were available for training. Furthermore, it was quite stable with respect to the parameter L. However, in cases where enough training texts were available, the original CNG method produced better results.

3.2 Instance-based Approaches

The majority of the modern authorship identification approaches considers each training text sample as a unit that contributes separately to the attribution model. In other words, each text sample of known authorship is an instance of the problem in question. A typical architecture of such an instance-based approach is shown in Figure 2. In detail, each text sample of the training corpus is represented by a vector of attributes (x) following methods described in Section 2 and a classification algorithm is trained using the set of instances of known authorship (training set) in order to develop an attribution model. Then, this model will be able to estimate the true author of an unseen text.

It has to be underlined that such classification algorithms require multiple training instances per class for extracting a reliable model. Therefore, according to instance-based approaches, in case we have only one but quite long training text for a particular candidate author (e.g., an entire book), this should be segmented into multiple parts, probably of equal length. From another point of view, when there are multiple training text samples of variable-length per author, the training text instance length should be normalized. To that end, the training texts per author are segmented to equally-sized samples (Sanderson & Guenter, 2006). In all these cases, the text samples should be long enough so that the text representation features can represent adequately their style. Various lengths of text samples have been reported in the
literature. Sanderson and Guenter (2006) produced chunks of 500 characters. Koppel, et al. (2007) segmented the training texts into chunks of about 500 words. Hirst and Feiguina (2007) conducted experiments with text blocks of varying length (i.e., 200, 500, and 1000 words) and they reported significantly reduced accuracy as the text block length decreases. Therefore, the choice of the training instance text sample is not a trivial process and directly affects the performance of the attribution model.

In what follows, we first describe the vector space models that comprise the majority of the instance-based approaches. Then, various similarity-based and meta-learning models are discussed.

3.2.1 Vector Space Models

Given that the training texts are represented in a multivariate form, we can consider each text as a vector in a multivariate space. Then, a variety of powerful statistical and machine learning algorithms can be used to build a classification model, including discriminant analysis (Stamatatos, et al., 2000; Tambouratzis, et al., 2004; Chaski, 2005), Support Vector Machines (SVM) (de Vel, et al, 2001; Diederich, et al, 2003; Teng, et al., 2004; Li, et al., 2006; Sanderson & Guenter, 2006), decision trees (Uzuner & Katz, 2005; Zhao & Zobel, 2005; Zheng, et al., 2006), neural networks (Matthews & Merriam, 1993; Merriam & Matthews, 1994; Tweedie, Singh, & Holmes, 1996; Zheng, et al., 2006; Khosmood & Levinson, 2006), genetic algorithms (Holmes & Forsyth, 1995), memory-based learners (Luyckx & Daelemans, 2005), classifier ensemble methods (Stamatatos, 2006a), etc.

Such algorithms have been studied thoroughly in the framework of (mostly topic-based) text categorization research (Sebastiani, 2002). Therefore, we will not discuss them further. It should be noted, though, that some of these algorithms can effectively handle high-dimensional, noisy, and sparse data, allowing more expressive representations of texts. For example, a SVM model is able to avoid overfitting problems even when several thousands of features are used and is considered one of the best solutions of current technology (Li, et al., 2006; Stamatatos, 2008).

The effectiveness of vector space models is usually diminished by the presence of the class imbalance problem. Recently, Stamatatos (2008) proposed an approach to deal with this problem in the framework of vector space instance-based approaches. In more detail, the training set can be re-balanced by segmenting the text samples of a particular author according to the size of their class (i.e., the length of all texts of that author). That way, many short text samples can be produced for minority authors (i.e., the authors for whom only a few training texts were available) while less but longer texts can be produced for the majority authors (i.e., the authors for whom multiple training texts were available). Moreover, text re-sampling (i.e., using some text parts more than one time) could be used to increase the training set of the minority authors.

3.2.2 Similarity-based Models

The main idea of similarity-based models is the calculation of pairwise similarity measures between the unseen text and all the training texts and, then, the estimation of the most likely author based on a nearest-neighbor algorithm. The most notable approach of this category has been proposed by Burrows (2002) under the name ‘Delta’. First, this method calculates the z-distributions of a set of function words (originally, the 150 most frequent words). Then, for each document, the deviation of each word frequency from the norm is calculated in terms of z-score, roughly indicating whether it is used more (positive z-score) or less (negative z-score) times than the average. Finally, the Delta measure indicating the difference between a set of (training) texts written by the same author and an unknown text is the mean of the absolute differences between the z-scores for the entire function word set in the training texts and the corresponding z-scores of the unknown text. The smaller Delta measure, the greater stylistic similarity between the unknown text and the candidate author. This method was mainly evaluated on literary texts (English poems and novels) producing remarkable results (Burrows, 2002; Hoover, 2004a). It has been demonstrated that it is a very effective
attraction method for texts of at least 1,500 words. For shorter texts the accuracy drops according to length. However, even for quite short texts, the correct author was usually included in the first five positions of the ranked authors which provides a means for reducing the set of candidate authors.

A theoretical understanding of the operation of Delta has been described by Argamon (2008). In more detail, he showed that Delta can be viewed as an axis-weighted form of nearest-neighbor classification, where the unknown text is assigned to the nearest category instead of the nearest training text. It was also shown that the distance ranking of candidate authors produced by Delta is equivalent to probability ranking under the assumption that word frequencies follow a Laplace distribution. This view indicates many extensions and generalizations of Delta, for example, using Gaussian distributions of word frequencies in place of Laplace distributions, etc. A detailed study of variations of Burrows’ Delta was presented by Hoover (2004a). He found that by using larger sets of frequent words (>500) the accuracy of the method was increasing. The performance was also improved when the personal pronouns and words for which a single text supplied most of their occurrences were eliminated. Some variations of the Delta score itself were also examined but no significant improvement over the original method was achieved (Hoover, 2004b).

Another similarity-based approach utilizing text compression models to estimate the difference between texts has been described by Benedetto, et al. (2002). The training phase of this method merely comprises the compression of each training text in separate files using an off-the-shelf algorithm (GZIP). For estimating the author of an unseen text, this text is concatenated to each training text file and then each resulting file is compressed by the same algorithm. Let \(C(x) \) be the bit-wise size of the compression of file \(x \) while \(x+y \) is the concatenation of text files \(x \) and \(y \). Then, the difference \(C(x+y)-C(x) \) indicates the similarity of a training text \(x \) with the unseen text \(y \). Finally, a 1-nearest-neighbor decision estimates the most likely author.

This method was strongly criticized by several researchers (Goodman, 2002; Khmelev & Teahan, 2003b) indicating many weaknesses. First, it is too slow since it has to call the compression algorithm so many times (as many as the training texts). Note that in the corresponding profile-based approach of Khmelev and Teahan (2003a), the compression algorithm is called as many times as the candidate authors. Hence, the running time will be significantly lower for the profile-based compression-based method. Moreover, various authorship identification experiments showed that the compression-based approach following the profile-based technique usually outperforms the corresponding instance-based method (Marton, et al., 2005). An important factor that contributes to this direction is that 1-nearest-neighbor approach is sensitive to noise. However, this problem could be faced by using the \(k \)-nearest-neighbors and a majority vote or a weighted vote scheme. Last but not least, GZIP is a dictionary-based compression algorithm and uses a sliding window of 32K to build the dictionary. This means that if a training text is long enough the beginning of that document will be ignored when GZIP attempts to compress the concatenation of that file with the unseen text. Comparative experiments on various corpora have shown that the RAR compression algorithm outperforms GZIP in most of the cases (Marton, et al., 2005).

An alternative distance measure for the compression-based approach was proposed by Cilibrasi and Vitanyi (2005). Based on the notion of the Kolmogorov complexity they defined the normalized compression distance (NCD) between two texts \(x \) and \(y \) as follows:

\[
NCD(x, y) = \frac{C(x + y) - \min\{C(x), C(y)\}}{\max\{C(x), C(y)\}}
\]

Cilibrasi and Vitanyi (2005) used this distance metric and the BZIP2 compression algorithm to cluster literary works in Russian by 4 different authors and reported excellent results. They even attempted to cluster the corresponding English translations of those texts with relatively good results.
3.2.3 Meta-learning Models

In addition to the general purpose classification algorithms described in Section 3.2.1, one can design more complex algorithms specifically designed for authorship attribution. To this end, an existing classification algorithm may serve as a tool in a meta-learning scheme. The most interesting approach of this kind is the *unmasking* method proposed by Koppel, et al. (2007) originally for author verification. The main difference with the typical instance-based approach shown in Figure 2 is that in the unmasking method the training phase does not exist. For each unseen text a SVM classifier is built to discriminate it from the training texts of each candidate author. So, for n candidate authors Koppel, et al. (2007) built n classifiers for each unseen text. Then, in an iterative procedure, they removed a predefined amount of the most important features for each classifier and measured the drop in accuracy. At the beginning, all the classifiers had more or less the same very high accuracy. After a few iterations, the accuracy of the classifier that discriminates between the unseen text and the true author would be too low while the accuracy of the other classifiers would remain relatively high. This happens because the differences between the unseen text and the other authors are manifold, so by removing a few features the accuracy is not affected dramatically. Koppel et al. (2007) proposed a simple meta-learning method to learn to discriminate the true author automatically and reported very good results. This method seems more appropriate when the unknown texts are long enough since each unknown text has to be segmented in multiple parts to train the SVM classifiers. This was confirmed by Sanderson and Guenter (2006) who examined the unmasking method in long texts (entire books) with high accuracy results while in short texts of newspaper articles the results were not encouraging.

3.3 Hybrid Approaches

A method that borrows some elements from both profile-based and instance-based approaches was described by van Halteren (2007). In more detail, all the training text samples were represented separately, as it happens with the instance-based approaches. However, the representation vectors for the texts of each author were feature-wisely averaged and produced a single profile vector for each author, as it happens with the profile-based approaches. The distance of the profile of an unseen text from the profile of each author was, then, calculated by a weighted feature-wise function. Three weighting parameters had to be tuned empirically: one for the difference between the feature values of the unseen text profile and the author profile, one for the feature importance for the unseen text, and another for the feature importance for the particular author. A similar hybrid approach was also used by Grieve (2007).

3.4 Comparison

Table 2 shows the results of comparing profile-based and instance-based approaches across several factors. As already underlined, the main difference is the representation of training texts. The former produce one cumulative representation for all training texts per author while the latter produce individual representations for each training text. In certain cases, this is an important advantage of profile-based methods. First, when only short texts are available for training (e.g., e-mail messages, online forum messages), their concatenation may produce a more reliable representation in comparison to individual representations of short texts. Furthermore, when only one long text (or a few long texts) is available for one author, instance-based approaches require its segmentation to multiple parts.

On the other hand, instance-based approaches take advantage of powerful machine learning algorithms able to handle high-dimensional, noisy, and sparse data (e.g., SVM). Moreover, it is easy to combine different kinds of stylometric features in an expressive representation. This is more difficult in profile-based approaches that are based on generative (e.g., Bayesian) models or similarity-based methods and usually they can handle homogeneous feature sets (e.g., function words, character n-grams, etc.) An exception is described by van Halteren (2007) although this is not a pure profile-based method. In addition, several stylometric features defined on the text-level, for instance, use of greetings
and signatures, cannot be easily used by profile-based approaches since the profile attempts to
represent the general properties of the author’s style rather than the properties of a typical text
sample by that author.

Another main difference is the existence of the training phase in the instance-based
approaches with the exception of compression-based models (Benedetto, et al., 2002). The
training phase of profile-based approaches is relatively simple comprising just the extraction
of measures from training texts. In both cases, the running time cost is low again with the
exception of compression-based methods. The running time cost of instance-based
compression methods is analogous to the number of training texts while the running time cost
for the corresponding profile-based approaches is analogous to the number of the candidate
authors (Marton, et al., 2005).

In instance-based approaches class imbalance depends on the amount of training texts
per author. In addition, the text-length of training texts may produce class imbalance
conditions when long texts are segmented into many parts. On the other hand, the class
imbalance problem in profile-based approaches depends only on text-length. Hence, we may
have two candidate authors with exactly the same amount of training text samples. However,
the first author’s texts are short while the other author’s texts are long. This means that the
concatenation of the training texts per author will produce two files that differ significantly in
text length.

4. Evaluation

The seminal study of Mosteller and Wallace (1964) was about the disputed authorship of the
Federalist Papers. This case offered a well defined set of candidate authors, sets of known
authorship for all the candidate authors, and a set of texts of disputed authorship. Moreover,
all the texts were of the same genre and about the same thematic area. Hence, it was
considered the ideal testing ground for early authorship attribution studies as well as the first
fully-automated approaches (Holmes & Forsyth, 1995; Tweedie, et al., 1996). It is also used
in some modern studies (Teahan & Harper, 2003; Marton, et al., 2005). Although appealing,
this case has a number of important weaknesses. More specifically, the set of candidate

<table>
<thead>
<tr>
<th>TABLE 2. Comparison of profile-based and instance-based approaches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile-based approaches</td>
</tr>
<tr>
<td>Text Representation</td>
</tr>
<tr>
<td>Stylometric features</td>
</tr>
<tr>
<td>Classification</td>
</tr>
<tr>
<td>Training time cost</td>
</tr>
<tr>
<td>Running time cost</td>
</tr>
<tr>
<td>Class imbalance</td>
</tr>
</tbody>
</table>
authors is too small; the texts are relatively long; while the disputed texts may be the result of collaborative writing of the candidate authors (Collins, et al., 2004).

A significant part of modern authorship attribution studies apply the proposed techniques to literary works of undisputed authorship, including American and English literature (Uzuner & Katz, 2005; McCarthy, et al., 2006; Argamon, et al., 2007; Koppel, et al., 2007; Zhao & Zobel, 2007), Russian literature (Kukushkina, et al., 2001; Cilibrasi & Vitanyi, 2005), Italian literature (Benedetto, et al., 2002), etc. A case of particular difficulty concerns the separation of works of the Bronte sisters, Charlotte and Anna, since they share the same characteristics (Burrows, 1992; Koppel, Akiva, & Dagan, 2006; Hirst & Feiguisna, 2007). The main problem when using literary works for evaluating author identification methods is the text-length of training and test texts (usually entire books). Certain methods can work effectively in long texts but not so well on short or very short texts (Sanderson & Guenter, 2006; Hirst & Feiguisna, 2007). To this end, poems provide a more reliable testing ground (Burrows, 2002).

Beyond literature, several evaluation corpora for authorship attribution studies have been built covering certain text domains such as online newspaper articles (Stamatatos, et al., 2000; Diederich, et al., 2003; Luyckx & Daelemans, 2005; Sanderson & Guenter, 2006), e-mail messages (de Vel, et al., 2001; Koppel & Schler, 2003), online forum messages (Argamon, et al., 2003; Abbasi & Chen, 2005; Zheng, et al., 2006), newswire stories (Khmeliev & Teahan, 2003a; Zhao & Zobel, 2005), blogs (Koppel, Schler, Argamon, & Messeri, 2006), etc. Alternatively, corpora built for other purposes have also been used in the framework of authorship attribution studies including parts of the Reuters-21578 corpus (Teahan & Harper, 2003; Marton, et al., 2005), the Reuters Corpus Volume 1 (Khmeliev & Teahan, 2003a; Madigan, et al., 2005; Stamatatos, 2007) and the TREC corpus (Zhao & Zobel, 2005) that were initially built for evaluating thematic text categorization tasks. Such corpora offer the possibility to test methods on cases with many candidate authors and relatively short texts.

Following the practice of other text categorization tasks, some of these corpora have been used as a benchmark to compare different methods on exactly the same training and test corpus (Sebastiani, 2002). One such corpus comprising Modern Greek newspaper articles was introduced by Stamatatos, et al. (2000; 2001) and has been later used by Peng, et al., (2003), Keselj, et al. (2003), Peng, et al., (2004), Zhang and Lee (2006), and Stamatatos (2006a; 2006b). Moreover, in the framework of an ad-hoc authorship attribution competition organized in 2004 various corpora have been collected covering several natural languages (English, French, Latin, Dutch, and Serbian-Slavonic) and difficulty levels (Juola, 2004; Juola, 2006).

Any good evaluation corpus for authorship attribution should be controlled for genre and topic. That way, authorship would be the most important discriminatory factor between the texts. Whilst genre can be easily controlled, the topic factor reveals difficulties. Ideally, all the texts of the training corpus should be on exactly the same topic for all the candidate authors. A few such corpora have been reported. Chaski (2001) described a writing sample database comprising texts of 92 people on 10 common subjects (e.g., a letter of apology to your best friend, a letter to your insurance company, etc.). Clement and Sharp (2003) reported a corpus of movie reviews comprising 5 authors who review the same 5 movies. Another corpus comprising various genres was described by Baayen, van Halteren, Neijt, and Tweedie (2002) and was also used by Juola and Baayen (2005) and van Halteren (2007). It consisted of 72 texts by 8 students of Dutch literature on specific topics covering three genres. In more detail, each student was asked to write three argumentative nonfiction texts on specific topics (e.g. the unification of Europe), three descriptive nonfiction texts (e.g., about soccer), and three fiction texts (e.g., a murder story in the university). Other factors that should be controlled in the ideal evaluation corpus include age, education level, nationality, etc. in order to reduce the likelihood the stylistic choices of a given author to be characteristic of a broad group of people rather than strictly personal. In addition, all the texts per author should be written in the same period to avoid style changes over time (Can & Patton, 2004).

4 http://www.mathcs.duq.edu/~juola/authorship_contest.html
A thorough evaluation of an authorship attribution method would require the examination of its performance under various conditions. The most important evaluation parameters are the following:

- Training corpus size, in terms of both the amount and length of training texts.
- Test corpus size (in terms of text length of the unseen texts).
- Number of candidate authors.
- Distribution of the training corpus over the authors (balanced or imbalanced).

In the case of imbalanced training corpus, an application-dependent methodology should be followed to form the most appropriate test corpus. One option is the distribution of test corpus over the candidate authors to imitate the corresponding distribution of the training corpus (Khmelev & Teahan, 2003a; Madigan, et al., 2005). Examples of such training and test corpora are shown in Figures 3a and 3b, respectively. Consequently, a model that learns to guess the author of an unseen text taking into account the amount of available training texts per author would achieve good performance on such a test corpus. This practice is usually followed in the evaluation of topic-based text categorization methods. However, in the framework of authorship attribution, it seems suitable only for applications that aim at filtering texts according to authorial information. Another option would be the balanced distribution of the test corpus over the candidate authors (Stamatatos, 2007; Stamatatos 2008). Examples of such training and test corpora are shown in Figures 3a and 3c, respectively. As a result, a model that learns to guess the author of an unseen text taking into account the amount of available training texts per author will achieve low performance on that balanced test corpus. This approach seems appropriate for the majority of authorship attribution applications, including intelligence, criminal law, or forensics where the availability of texts of known authorship should not increase the likelihood of certain candidate authors. That is, in most cases it just happens to have many (or few) texts of known authorship for some authors. Note also that an imbalanced training corpus is the most likely real-world scenario in a given authorship identification application.

Another important factor in the evaluation of an authorship attribution approach is its ability to handle more than one natural language. Recall from section 2 that many features used to represent the stylistic properties are language-dependent. In general, methods using character features can be easily transferred to other languages. A few studies present experiments in multiple natural languages. Peng, et al. (2003), evaluated their method in three languages, namely, English, Greek, and Chinese, while Keselj, et al. (2003) used English and Greek corpora. In addition, Abassi and Chen (2005) and Stamatatos (2008) used English and Arabic corpora while Li, et al. (2006) evaluated their approach in English and Chinese texts.

![FIG. 3. Different distributions of training and test texts over 5 candidate authors: (a) an imbalanced distribution of training texts, (b) an imbalanced distribution of test texts imitating the distribution of training texts, (c) a balanced distribution of test texts.](image)
Beyond language, an attribution method should be tested on a variety of text genres (e.g., newspaper articles, blogs, literature, etc.) to reveal its ability to handle unrestricted text or just certain text domains.

5. Discussion

Rudman (1998) criticized the state of authorship attribution studies saying: ‘Non-traditional authorship attribution studies – those employing the computer, statistics, and stylistics – have had enough time to pass through any “shake-down” phase and enter one marked by solid, scientific, and steadily progressing studies. But after 30 years and 300 publications, they have not’. It is a fact that much of redundancy and methodological irregularities still remain in this field partly due to its interdisciplinary nature. However, during the last decade, significant steps have been taken towards the right direction. From a marginal scientific area dealing only with famous cases of disputed or unknown authorship of literary works, authorship attribution provides now robust methods able to handle real-world texts with relatively high accuracy results. Fully-automated approaches can give reliable solutions in a number of applications of the Internet era (e.g., analysis of e-mails, blogs, online forum messages, etc.) To this end, this area has taken advantage of recent advances in information retrieval, machine learning, and natural language processing.

Authorship attribution can be viewed as a typical text categorization task and actually several researchers develop general text categorization techniques and evaluate them on authorship attribution together with other tasks, such as topic identification, language identification, genre detection, etc. (Benedetto, et al., 2002; Teahan & Harper, 2003; Peng, et al., 2004; Marton, et al., 2005; Zhang & Lee, 2006) However, there are some important characteristics that distinguish authorship attribution from other text categorization tasks. First, in style-based text categorization, the most significant features are the most frequent ones (Houvardas & Stamatatos, 2006; Koppel, Akiva, & Dagan, 2006) while in topic-based text categorization the best features should be selected based on their discriminatory power (Forman, 2003). Second, in authorship attribution tasks, especially in forensic applications, there is extremely limited training text material while in most text categorization problems (e.g., topic identification, genre detection) there is plenty of both labeled and unlabeled (that can be manually labeled) data. Hence, it is crucial for the attribution methods to be robust with a limited amount of short texts. Moreover, in most of the cases the distribution of training texts over the candidate authors is imbalanced. In such cases, the evaluation of authorship attribution methods should not follow the practice of other text categorization tasks, that is, the test corpus follows the distribution of training corpus (see Section 4). On the contrary, the test corpus should be balanced. This is the most appropriate evaluation method for most of the authorship attribution applications (e.g., intelligence, criminal law, forensics, etc.) Note that this does not necessarily stand for other style-based text categorization tasks, such as genre detection.

Several crucial questions remain open for the authorship attribution problem. Perhaps, the most important issue is the text-length: How long should a text be so that we can adequately capture its stylistic properties? Various studies have reported promising results dealing with short texts (with less than 1,000 words) (Sanderson & Guenter, 2006; Hirst & Feguina, 2007). However, it is not yet possible to define such a text-length threshold. Moreover, it is not yet clear whether other factors (beyond text-length) also affect this process. For example, let a and b be two texts of 100 words and 1,000 words, respectively. A given authorship attribution tool can easily identify the author of a but not the author of b. What are the properties of a that make it an easy case and what makes b so difficult albeit much longer than a? On the other hand, what are the minimum requirements in training text we need to be able to identify the author of a given text?

Another important question is how to discriminate between the three basic factors: authorship, genre, and topic. Are there specific stylometric features that can capture only stylistic, and specifically authorial, information? Several features described in Section 2 are claimed to capture only stylistic information (e.g., function words). However, the application
of stylometric features to topic-identification tasks has revealed the potential of these features to indicate content information as well (Clement & Sharp, 2003; Mikros & Argiri, 2007). It seems that low-level features like character n-grams are very successful for representing texts for stylistic purposes (Peng, et al., 2003; Keselj, et al., 2003; Stamatatos, 2006b; Grieve, 2007). Recall that the compression-based techniques operate also on the character level. However, these features unavoidably capture thematic information as well. Is it the combination of stylistic and thematic information that makes them so powerful discriminators?

More elaborate features, capturing syntactic or semantic information are not yet able to represent adequately the stylistic choices of texts. Hence, they can only be used as complement in other more powerful features coming from the lexical or the character level. Perhaps, the noise introduced by the NLP tools in the process of their extraction to be the crucial factor for their failure. It remains to be seen whether NLP technology can provide even more accurate and reliable tools to be used for stylometric purposes. Moreover, distributional features (Karlgren & Eriksson, 2007) should be thoroughly examined, since they can represent detailed sequential patterns of authorial style rather than mere frequencies of occurrence.

The accuracy of current authorship attribution technology depends mainly on the number of candidate authors, the size of texts, and the amount of training texts. However, this technology is not yet reliable enough to meet the court standards in forensic cases. An important obstacle is that it is not yet possible to explain the differences between the authors’ style. It is possible to estimate the significance of certain (usually character or lexical) features for specific authors. But what we need is a higher level abstract description of the authorial style. Moreover, in the framework of forensic applications, the open-set classification setting is the most suitable (i.e., the true author is not necessarily included in the set of candidate authors). Most of the authorship attribution studies consider the closed-set case (i.e., the true author should be one of the candidate authors). Additionally, in the open-set case, apart from measuring the accuracy of the decisions of the attribution model, special attention must be paid to the confidence of those decisions (i.e., how sure it is that the selected author is the true author of the text). Another line of research that has not been adequately examined so far is the development of robust attribution techniques that can be trained on texts from one genre and applied to texts of another genre by the same authors. This is quite useful especially for forensic applications. For instance, it is possible to have blog postings for training and a harassing e-mail message for test or business letters for training and a suicide note for test (Juola, 2007).

A significant advance of the authorship attribution technology during the last years was the adoption of objective evaluation criteria and the comparison of different methodologies using the same benchmark corpora, following the practice of thematic text categorization. A crucial issue is to increase the available benchmark corpora so that they cover many natural languages and text domains. It is also very important for the evaluation corpora to offer control over genre, topic and demographic criteria. To that end, it would be extremely useful to establish periodic events including competitions of authorship attribution methods (Juola, 2004). Such competitions should comprise multiple tasks that cover a variety of problems in the style of Text Retrieval Conferences. This is the fastest way to develop authorship attribution research and provide commercial applications.

Acknowledgement

The author wishes to thank the anonymous JASIST reviewers for their valuable and insightful comments.

References

de Vel, O., Anderson, A., Corney, M., & Mohay, G. (2001). Mining e-mail content for author identification forensics. SIGMOD Record, 30(4), 55-64.

